
Computational Methods in the Study of Diagram
Algebras Using SAGE

Pavel Javornik

1 Introduction

The purpose of the following document is to introduce the reader to combinatorial represen-
tation theory, centralizer algebras, and diagram algebras via computational methods. We
do so with the assistance of SAGE, an open-source mathematical programming language.
In addition to using SAGE’s built-in libraries, we design algorithms to implement modern,
combinatorial techniques in the study of multiplicity-free families of algebras. To that end,
we make some contributions to the development of SAGE’s algebra packages by doing the
following:

1. defining standard representations of diagram algebras as they act on self-tensored
vector spaces;

2. designing and implementing an algorithm to calculate the central, primitive, orthogonal
idempotents of the Brauer Algebra;

3. exploring the various ways that the idempotents may help us in understanding how
modules decompose into direct sums of isotypic components of the underlying algebras.

This document is meant to be an interactive one. While the following printout could simply
be read, we encourage the reader to follow along by downloading the jupyter notebook file
(.ipynb format) on my website [Ja]. Once the file is downloaded, it may be opened as a
SAGE jupyter notebook [SAGE]. All relevant information about the use of SAGE’s various
libraries can be found on that website.

Before proceeding any further, we would need to define many of the important objects that
we will be studying. We will then motivate the use of combinatorial representation theory by
explaining the importance of the Artin-Wedderburn theorems and Schur-Weyl duality, and
the meshing of the two to help us understand the semisimple, classical Lie group/Lie algebra
representations.

In section 3, we begin using SAGE to see how far canonical linear algebra methods can
take us in understanding the one-dimensional irreducible submodules. In section 4, we will
begin applying our understanding of idempotents and centralizer algebras to fully decompose
symmetric group algebra modules.

In the final section, we apply combinatorial methods to the implementation of standard
representations of semisimple diagram algebras acting on self-tensored spaces and the
calculation of central, primitive, orthogonal idempotents of the semisimple Brauer subalgebra.

2 Preliminaries on Representation Theory

Many of the following definitions and methods can be found in Chapters 2, 3, 5, and appendix
chapters C and D of Goodman and Wallach’s Representations and Invariants of the Classical
Groups [GoWall].

We say that the set A is a unital algebra if (A,+, ·) is a ring with unity for which (A,+) is a
vector space over a field F , and

α(a · b) = (αa) · b = a · (αb)

1

for all a, b ∈ A and α ∈ F . If G is a group, then the set FG = spanF {g : g ∈ G} that is the
F -linear span of the elements of G and has a canonical unital algebra structure we refer to
as the group algebra. For example if G = S2 = {id, (1 2)} is the symmetric group acting on
2 elements, addition is defined as (α1, α2) + (β1, β2) = (α1id + α2(1 2)) + (β1id + β2(1 2)) =
((α1 + β1)id + (α2, β2)(1 2)) = (α1 + β1, α2 + β2). As for multiplication,

(α1, α2)·(β1, β2) = (α1id+α2(1 2))·(β1id+β2(1 2)) = α1β1id2+α1β2id(1 2)+α2β1(1 2)id+α2β2(1 2)2

= (α1β1 + α2β2, α1β2 + α2β1)

If R is a ring, we say an abelian group (M,+) is a left R module if there is a left action
R×M →M (m 7→ r ·m) satisfying:

1. 1R ·m = m for all m ∈M(Identity-Preserving)
2. a(b ·m) = (ab) ·m for all a, b ∈ R, m ∈M (Associative Action)
3. (a+ b) ·m = a ·m+ b ·m for all a, b ∈ R, m ∈M (Right-Distributive over R-addition)
4. a · (m+ n) = a ·m+ b · n for all a ∈ R, m,n ∈M (Left-Distributive over M -addition)

IfM is a vector space over a field F , then we also require that 5. a ·(αm+βn) = αa ·m+βa ·n
(Left-Distributive and F -linear over M -addition)

Since A is a unital ring, we would define a left A module the exact same way. Let B be
another unital algebra.

We say M is a right B module if instead acting by B happened on the right: m · b ∈M .

1. m · 1B = m for all m ∈M(Identity-Preserving)
2. (m · a) · b = m · (ab) for all a, b ∈ B, m ∈M (Associative Action)
3. m · (a+ b) = m · a+m · b for all a, b ∈ B, m ∈M (Left-Distributive over R-addition)
4. (m+n) · a = m · a+n · a for all a ∈ R, m,n ∈M (Right-Distributive over M -addition)

We say that M is an (A,B) bimodule if:

1. M is a left A module and a right B module
2. a(mb) = (am)b for all a ∈ A, b ∈ B,m ∈M

Sometimes we call M an A⊗B left module if A⊗B has a left action of the form a⊗ b ·m =
a(mb) = (am)b. But this only makes sense when the actions of A and B commute with one
another, as it wouldn’t matter what action would be applied first.

2.1 Ideals, Semisimplicity, and Decompositions

We say that Q ⊂ R is a left ideal if rq ∈ Q for all r ∈ R and q ∈ Q, and Q is an abelian
group with addition is restricted to Q. Q is a right ideal if instead qr ∈ Q.

Let M,N be R modules. We say N ⊂M is a submodule if a ·n ∈ N for all a ∈ R and (N,+)
is an abelian group. All rings and algebras, R are natural left R modules under action by
multiplication from the left, and therefore any left ideal is automatically a submodule. For
modules, we fix a conventional left or right action, and focus explicitly on that.

A set B ⊂ A is said to be a subalgebra of A if in addition to being a submodule, (B,+) is a
subspace of (A,+) over the field F .

A module W is said to be simple if its only submodules are 0 = {0W } and itself. An algebra
A (or ring R) is simple if its only left ideals are 0 and itself.

We say that V is semisimple if it decomposes into a direct sum of simple submodules. We
say that A is semisimple if every A module is semisimple. It turns out that A is semisimple
if and only if A as an A module is semisimple.

2

2.2 Algebra, ring, and group representations

Let R be a unital ring and V a vector space over a field F . We say a representation of a ring
R is an F-linear, unital homomorphism ρ : R→ End(V). satisfying:

1. ρ(a+ b) = ρ(a) + ρ(b) for all a, b ∈ R (Additive-Homomorphism)
2. ρ(a · b) = ρ(a) ◦ ρ(b) for all a, b ∈ R (Multiplicative-Homomorphism)
3. ρ(1R) = idV (Identity-Preserving)

For an algebra A, in order for ρ : A→ End(V) to be an algebra representation it would have
to satisfy:

1. ρ(αa+ βb) = αρ(a) + βρ(b) for all a, b ∈ A, α, β ∈ F (Linearity)
2. ρ(αa · b) = αρ(a) ◦ ρ(b) for all a, b ∈ A, α ∈ F (Multiplicative-Homomorphism)
3. ρ(1A) = idV (Identity-Preserving)

It wouldn’t make much sense to have the vector space and the algebra to be over different
fields, unless A’s field is a subfield of V ’s. But for our purposes we will just work with
examples where they are over the same field.

For a group G, we say that ρ : G→ End(V) is a group representation if

1. ρ(a · b) = ρ(a) ◦ ρ(b) for all a, b ∈ G (Multiplicative-Homomorphism)
2. ρ(1G) = idV (Identity-Preserving)

Representations are useful tools in understanding rings as endomorphism rings of vector
spaces. With these definitions, any vector space inherits a structure as a left R module by
defining the action as r · v = ρ(r)(v). It also means that we may rely on linear algebra tools
to solve certain problems. We usually refer to a representation as the ordered pair (ρ, V).

Let ρ be an algebra representation of A. We say (π,W) is a subrepresentation of (ρ, V) if
W is a subspace of V , and for all a ∈ A we have that π(a) = ρ(a)|W , i.e. the action of A
preserves W . In that sense W is just a submodule of V as A modules.

A representation is said to be irreducible (or simple) if its only subrepresentations are itself
and the trivial subrepresentation, where the subspace consists of only the zero vector. With
these definitions it is easy to see that the irreducible representations of a ring are equivalent
to the simple submodules of vector spaces. And therefore, the full decomposition of a space
according to the action of algebra is isomorphic to the decomposition of the representation
as the direct sum of irreducible representations.

For example, let G = S2 = {1, (1 2)} be the set of permutations of {1, 2} and F = C. Then
FG is a two-dimensional algebra. The standard representation sends

1 7→
(

1 0
0 1

)
, (1 2) 7→

(
0 1
1 0

)
with ordered basis (1, (1 2)). As a module, this decomposition is C{1+(1 2)}⊕C{1−(1 2)} =
C{v1} ⊕ C{v2}, and so ρ = ρ+ ⊕ ρ−, where ρ+((1 2))v1 = v1, and ρ−((1 2))v2 = −v2. With
this new basis,

1 7→ 1⊕ 1, (1 2) 7→ 1⊕ (−1)

The gist is then in order to understand an A module, it is best to understand the set of
irreducible representations, or simple A modules {Aλ}, where Aλ is a summand of the
semisimple decomposition of A. If M is an A module, then we define Mλ =

⊕
Aλ∼=U⊂M U ∼=⊕mλ

i=1A
λ = mλA

λ, i.e. the sum of distinct submodules isomorphic to Aλ. mλ is the
multiplicity of the of Aλ in M .

An important tool in the characterization of simple submodules is given by the trace form
of the representation (ρ, V). If ρ = ρλ1 ⊕ ... ⊕ ρλn is a semisimple decomposition of the
representation acting on the semisimple decomposition V = V λ1 ⊕ ...⊕ V λn , we define the
character of a representation ρλk to be χλk : A→ F , where χλk(a) = tr(ρλk(a)).

3

2.3 Lie algebras and Lie algebra representations

A Lie algebra is a bit of a misnomer as it is not an algebra at all. A Lie algebra is a vector
space, g, over a field equipped with a bilinear Lie bracket [·, ·] : g⊗ g→ g such that:

1. [x, y] = −[y, x] (Skew-symmetric)
2. [x, [y, z]] + [y, [z, x]] + [z, [y, x]]=0 (Jacobi Identity)

A common example is R3 in which the Lie bracket is the cross product of two vectors.

A Lie Algebra representation is a map ρ : g→ End(V) such that for all x, y ∈ g and α, β ∈ F :

1. ρ(αx+ βy) = αρ(x) + βρ(y) (F-linearity)
2. ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x) (Commutator Under Bracket)

While a Lie algebra is not an algebra, its universal enveloping algebra, Ug is. The universal
enveloping algebra of a Lie algebra is the (often infinite dimensional) free algebra over F
generated by the basis elements of g, say x1, x2, ... with additional relations. If [xi, xj] =∑
k c

i,j
k xk in the Lie algebra, then the relations in Ug are given as xixj − xjxi =

∑
k c

i,j
k xk.

In essence it encodes every possible representation of a Lie algebra. This means that a
representation of a Lie algebra can be extended to its universal enveloping algebra, and the
two representations are equivalent and admit the exact same decompositions of spaces.

2.4 A taste of Lie methods

An important consequence is that (xy) · v = ([x, y] + yx) · v for any x, y ∈ Ug. This identity is
extremely useful in the study of Lie algebras. For example if [x, y] = h and v is an eigenvector
of h, with eigenvalue λ and we know that x · v = 0 then x · (y · v) = (λ+ 0)v = λv, and we see
that (y · v) 7→ λv under the action of x. This is useful in what is known as a highest-weight
decomposition by the element h. If V is a complex vector space, there must exist one
eigenvector v+ for which hv+ = µv+, assuming h 6= 0. Since V is finite-dimensional, there
is some k > 0 for which xk+1v = 0, but xkv = v 6= 0 as long as h(xk)v+ = µk, for distinct
µk. This ensures that each xkv+ isn’t a scalar multiple of another. Therefore, this v exists.
Working backwards, let h · v = λv, and show that the eigenvalues of {v, yv, y2v, ..., ydv}
under h are all distinct, and yd+1v = 0. Then {v, yv, y2v, ..., ydv} forms a d+1 dimensional
subspace, called L(d). If x sends ykv to a scalar multiple of yk−1v for all k = 1, ..., d, (and v
to 0) then we know that L(d) is an C{x, y, h}-invariant subspace, or simple submodule, of V .
The triple (x, y, h) is called an sl2 triple, and h is what is known as a Cartan element for x
and y.

2.5 Connections between Lie groups and Lie algebras

A Lie algebra is naturally associated to a Lie group, G, as long as G is both a group and
a smooth (real or complex) manifold (a manifold whose charts to R or C and transition
functions are C∞) and the left action G×G→ G defined as (a, b) 7→ a−1b is a smooth map
from the product manifold to G. A Lie algebra is then the (complex or real) vector space
T1G, the tangent space of G at the identity element 1 ∈ G. For example, the quotient space
R/Z ∼= S1 is a real Lie group, and its associated Lie algebra is isomorphic to R.

2.6 Some more examples

The complex Lie group of 2× 2 determinant one matrices with complex entries, SL2(C) has
the Lie algebra sl2(C) of the C linear span of traceless complex matrices. It has a canonical

basis as C vector space {x, y, h}, with x =
(

0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
. Moreover,

[x, y] = xy− yx is the commutator Lie bracket. The sl2 triple that we mentioned earlier here
is (x, y, h). In general, sln(C) is the C span of traceless n× n complex matrices.

For the group SL2(R), the basis is the same, except sl2(R) is the R span of those matrices.

4

We define the complexification of a real Lie algebra, g as the vector space gC = C⊗R g. It
is no coincidence that the complexification of sl2(R) is sl2(C). It is true that the complex
representations of the complexification of real Lie algebra are equivalent to the complex
representations of that real Lie algebra.

However, it is true that the representation of a simply connected Lie group G is equivalent
to its Lie algebra representation. Lie algebras are therefore important tools in studying how
various vector spaces decompose under the action of a Lie group. Moreover, many Lie groups
are not finitely generated, e.g. S1. As finite-dimensional vector spaces, its Lie algebra as a
vector space is considered finitely generated. If G is not simply connected, there are other
specific criterias for when the complexified algebra representation is equivalent to the real
group representation.

For example, let SO3(R) be the group of rotation matrices. The complexification of its Lie
algebra, so3(R) is the C span of matrices:

Jx =

0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 , Jz =

0 −1 0
1 0 0
0 0 0

denoted so3(C). The Lie bracket here is also just the matrix commutator. This Lie algebra is
isomorphic to sl2(C) by taking Jx 7→ 1

2 (x− y), Jy 7→ i
2 (x+ y), and Jz 7→ ih

2 . A Lie algebra
homomorphism is a homomorphism of vector spaces, ψ, such that ψ([A,B]) = [ψ(A), ψ(B)]
for all A,B and respective Lie brackets. It is an isomorphism if it is an isomorphism of vector
spaces. From here on we consider an so3(C) representation as a sl2(C) representation.

We know of a decomposition of invariant subspaces via the highest weigth decomposition
using eigenvalues of ρ(h). One great criteria for checking if a representation of sl2(C) lifts to
a representation of SO3(R) is that it happens when eiπρ(h) = idV , where eA =

∑∞
k=0A

k/k!
for A ∈ End(V). So if V ∼= L(d) = Cv ⊕ Cyv ⊕ ...⊕ Cydv, and ρ(h) = diag(λ0, ..., λd) with
respect to this basis, we would require that eiπλk = 1 for all k, i.e. each λk is an even integer,
as seen on pg. 83 in Alexander Kirillov’s “An Introduction to Lie Groups and Lie Algebras”
[Ki].

The connection here is that the exponential function take the Lie algebra of SO3(R) to the
Lie Group via a parametrization, i.e. etJz maps to the rotation of R3 about the z-axis by t
radians. A Lie algebra representation ψ is equivalent to its Lie group representation if there
exists an Ψ : G→ GL(V) for which Ψ(eX) = eψ(X) for all X in the Lie algebra.

By our isomorphism, this is identical to saying e2πψ(Jz) acts trivially on V , i.e. the eigenvalues
of ψ(Jz) are all of the form im for m ∈ Z. To prove why this would work, requires us to
look at the lifted representation of ψ onto the simply connected universal cover of SO2(R),
which is isomorphic to the real special unitary group SU(2). The complexification of its Lie
algebra is sl2(C), and therefore implies that SU(2)’s complex representations are equivalent
to sl2(C)’s complex representations, so there is a representation Ψ̃ on SU(2) that is equivalent
to ψ. If one can show that for the covering map p : SU(2)→ SO3(R), if ker p ⊂ kerΨ̃, then
Ψ̃ descends to a representation Ψ on SO3(R) for which Ψ ◦ p = Ψ̃.

2.7 Idempotents

Another vastly important tool in understanding module decompositions involves the calcula-
tion of primitive, central, orthogonal idempotents. Recall an idempotent of a ring, R, is an
element e for which e2 = e. We say that e is:

1. Central if e commutes with every element in R

We say that a collection of distinct idempotents {eλ} and λ ∈ Λ are:

1. Primitive if
∑
λ eλ = 1, the identity element in R

2. Orthogonal if for any two eλ, eµ we have eλeµ = 0 if λ 6= µ

5

Theorem 2.1. Let A be a non-trivial, finite-dimensional, unital algebra over a field F . Let
M be an A module. Then the following are equivalent:

1. The left-regular module A admits a full decomposition as A ∼=
⊕

λ∈ΛAeλ, where
{eλ} are a set of central, primitive, orthogonal idempotents satisfying

∑
eλ = 1A and

Aeλ = Aλ

2. A decomposes as the direct sum of endomorphism rings over division rings, i.e. A ∼=⊕`
i=1Mni×ni(∆i)

3. A is semisimple

The equivalency follows directly from a theorem of Wedderburn, and a theorem of Goodman
and Wallach’s [GoWall, 128,133]. Since A is an algebra, it follows automatically that each
∆i is actually just F . The idempotents become important in the study of centralizer
algebras because they project the module, say V , in question onto a direct sum of isomorphic
components nλVλ, where Vλ is a representative of the isomorphism class λ. Thus, up to a
choice of basis, one can identify each idempotent with an element of Λ, and V ∼=

⊕
λ∈V̂ V

λ,
where V λ ∼= nλAeλ, and λ ∈ V̂ satisfies that V λ 6= 0.

2.8 Idempotents of group algebras

Let FG be a finite-dimensional, semisimple group algebra. We define the standard representa-
tion ρ : FG→ End(FG) by taking the group element to its action on the basis {g : g ∈ G}
and extending F -linearly. Let ρ = ⊕λρλ be the semisimple decomposition of ρ. Then the
primitive, central, idempotent corresponding to λ is given as [GoWall, 153]:

eλ = χλ(1G)
|G|

∑
g∈G

χλ(g−1)g

Going back to our previous example, with F = C and G = S2 we have

e+ = χ+(1G)/|G|(χ+(1−1) · 1 + χ+((1 2)−1) · (1 2)) = 1
2(1G + (1 2))

e− = χ−(1G)/|G|(χ−(1−1) · 1 + χ−((1 2)−1) · (1 2)) = 1
2(1G − (1 2))

Note that e+ projects onto the subspace for which (1 2) acts by scaling by 1, and e− projects
onto the subspace for which (1 2) acts by scaling by -1.

The following is a theorem commonly attributed to Issai Schur and Hermann Weyl, and is a
primary focus of this paper. It is the basis of study of centralizer algebras, and goes by the
names of Schur-Weyl Duality, the Double Centralizer Theorem, and the Double Commutant
Theorem [GoWall, 137].

Theorem 2.2. Let M be a vector space, and A ⊆ End(M). If the algebra B is semisimple,
and B = EndA(M) = {φ ∈ End(M) : φ(ψ(m)) = ψ(φ(m)) ∀ψ ∈ A, ∀m ∈ M}, then
EndB(M) = A and M has a multiplicity-free complete decomposition:

M ∼=
⊕
λ∈Λ

Aλ ⊗Bλ

as an A ⊗ B-bimodule. Here Bλ are mutually, non-isomorphic, simple B modules, where
λ ∈ Λ, an indexing set for the simple submodules of B. The Bλ’s are known as isotypic
components of M .

Moreover, Aλ ⊗Bλ ∼= mM (λ)Aλ ∼= dim(Aλ)Bλ as A modules and B modules, respectively.
That is to say that Aλ ⊗Bλ is isomorphic to a number of copies of isotypic components of
M as a B module. Here mM (λ) is the multiplicity of the submodule Aλ in M .

6

The next sections will primarily focus on studying the centralizer algebras of Lie groups
and and Lie algebras to show the interplay between combinatorial representation theory,
Artin-Wedderburn, and Schur-Weyl duality.

3 Computing the isotypic components of one-dimensional
submodules of the symmetric group algebra

Let V = Cn, andM = V ⊗k. We will verify that CSkM ’s one-dimensional isotypic components,
as a g = Usln(C) module with the diagonal action on simple tensors: g · (v1 ⊕ ... ⊕ vk) =
gv1 ⊕ ...⊕ vk + ...+ v1 ⊕ ...⊕ gvk decomposes according to the Double-Centralizer Theorem.
It is thanks to a theorem of Schur that we know Endg(M) = CSk, where Sk acts on the
simple tensors of M by permutation of their orders [GoWall, 372]. And so to understand a
decomposition of M under the action of the Lie algebra, it suffices to study its decomposition
as a CSk module.

We need to find a representation ρ : S = Sk → End(M) as it permutes the basis vectos of M
before extending it linearly to the group algebra. But first, we need to adopt some kind of
convention for the basis vectors of M .

Let V be the C-span of standard basis vectors {e0, ..., en−1} Let u∑k

j=1
ij

= ei1 ⊗ ...⊗ eik ,

with ij ∈ {0, ..., n− 1}. This gives a bijective relationship between the nk basis vectors, and
the set {0, ..., n− 1}k, i.e. the base n representation of the indexing set for U = {uj}.

An element σ ∈ Sk acts on a basis element in U by σ · ei1 ⊗ ...⊗ eik = eiσ(1) ⊗ ...⊗ eiσ(k) .

If k = 3 and n = 2, then (1 2) · u5 = (1 2) · e1 ⊗ e0 ⊗ e1 = e0 ⊗ e1 ⊗ e1 = u3. For the
generators of S3, we have:

(1 2) 7→

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(1 3) 7→

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

Now we need to create a function that takes an element in Sk to its element in End(M)

def rho(g,n,k):
"""
function takes an element g in S_k and returns
an n^k x n^k matrix as it acts on basis vectors of M
"""
z=zero_matrix(n^k)
for j in range(0,n^k):

l=NN(j).digits(n) #list of base n digits
s=[0] # digits returns the minimal list of non-zero elements
#in the expansion, so we need to make it uniform:
while len((n^k-1).digits(n))-len(l) !=0:

7

l=l+s
l.reverse() # makes list left-justified, i.e.
#3 in base 2 is now [1,1,0]
perm="("+str(j)+","
m=g(l) # permutes list
m.reverse() # makes list friendly for conversion to base 10
y=0
for i in range(len(l)):

y+=m[i]*n^i # converts to base 10
perm+=str(y)+")"
for i in range(0,n^k): # goes along column, assigns 1

#if it hits the target basis vector
if i==y:

z[i,j]=1
return z

Let’s confirm that (1 2) is indeed sent to its matrix in End(M).

n=2
k=3
S_k=SymmetricGroup(k)
g=S_k("(1,2)")
print rho(g,n,k)

[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]

3.1 Finding the irreducible one-Dimensional submodules

We know that because CSk is semi-simple, so are any CSk modules. The following function
will return a list of the one-dimensional simple submodules of M . It works by a simultaneous
eigenspace decomposition of every element in the matrix group ρ(Sk). First it evaluates the
spectrum of eigenvalues in the group, and then it finds the intersection of eigenspaces for
every element with respect to a single eigenvalue. When it is done, it stores that space in a
list of common eigenspaces of ρ(Sk). This process repeats until the spectrum is exhausted.
This spectrum must be finite, as ρ(Sk) is finite.

def one_dimensional_simple_sub_modules(n,k):
S_k=SymmetricGroup(k)
R=QQbar
matrix_list=[]
for g in S_k.gens():

matrix_list.append(rho(g,n,k))
G=MatrixGroup(matrix_list)
eigenspectrum=[]
for i in range(0,G.cardinality()):

l= matrix(R,G[i]).eigenvalues()
for j in range(0, n^k):

if l[j] not in eigenspectrum:
eigenspectrum.append(l[j])

common_eigenspace_list=[]
iden=identity_matrix(R,n^k).column_space()
for i in eigenspectrum:

common_eigenspace=iden

8

mat_eig_space=iden
for j in range(0,G.cardinality()):

mat = matrix(R,G[j])
mat_eig_space=iden
for d in range(0,len(mat.eigenspaces_right())):

if mat.eigenspaces_right()[d][0]==i:
mat_eig_space=mat.eigenspaces_right()[d][1]

common_eigenspace=common_eigenspace.intersection(mat_eig_space)
if common_eigenspace.dimension() != 0:

common_eigenspace_list.append([i,common_eigenspace])
return common_eigenspace_list

Here we will look at the case where n = 2 and k = 3. As we can see there are only 4 copies
of the trivial S3 module. The first entry is the eigenvalue, and the second is information
about the eigenspace.

for i in one_dimensional_simple_sub_modules(2,3):
print i
print '\n'

[1, Vector space of degree 8 and dimension 4 over Algebraic Field
Basis matrix:
[1 0 0 0 0 0 0 0]
[0 1 1 0 1 0 0 0]
[0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 1]]

Thus, by duality, the corresponding g module is 4 dimensional and appears with multiplicity
1. The eigenspaces are all one-dimensional.

Now if n=k=3, there are both trivial and sign sub-modules:

for i in one_dimensional_simple_sub_modules(3,3):
print i
print '\n'

[-1, Vector space of degree 27 and dimension 1 over Algebraic Field
Basis matrix:
[0 0 0 0 0 1 0 -1 0 0 0 -1 0 0 0 1 0 0 0 1 0 -1 0 0 0 0 0]]

[1, Vector space of degree 27 and dimension 10 over Algebraic Field
Basis matrix:
[1 0]
[0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0]
[0 1]]

According to the theorem, corresponding g submodules are one-dimensional (dual with signed
submodule) and 10 dimensional (dual with trivial module).

Of course, finding the one-dimensional submodules really comes down to calculating the
simultaneous eigenspaces for each eigenvalue for the endomporphisms in ρ(Sk), and inter-
secting them, but we should strive to solve for the higher-dimensional simple sub-modules
as well. This only gives us information on the g modules that appear with multiplicity one.
Unfortunately, this is the best we can hope for in terms of canonical methods without having
to rely on combinatorics and Lie methods.

9

So what can we do? Let us consider the Artin-Wedderburn Theorem as it applies to algebras.

If (V, ρ) is an A representation, then V becomes an A module through ρ, and ρ(eλ) is the
projection of V onto V λ. In this context, these idempotents hold the key to understanding
how a space decomposes as an A module.

In the case of group algebras, there is a nice formula for calculating idempotents using the
elements of the group as standard basis vectors, but it requires that you already understand
what the isomorphism classes of the algebra already look like. But in order to generalize for
large families of algebras like CSk, we need to employ some different tactics. We explore
some of these methods later on.

4 Central, primitive, orthogonal idempotents of CSk as
actions on (Cn)⊗k

We took linear algebra methods as far as they could go, so this time we will calculate the
actions of the primitive-central, orthogonal idempotents of CSk as they project onto the
subspaces of V = Cn⊗k isomorphic to the simple gln(C)

⊗
CSk bimodules of V .

Luckily for us, SAGE already knows what these idempotents are. Let’s begin by working
with Symmetric Group Algebra. If we assign the group call *.algebra(F)

k=3
CSk=SymmetricGroup(k).algebra(QQbar)

CSk_idem=CSk.central_orthogonal_idempotents()
print CSk_idem

[1/6*() + 1/6*(2,3) + 1/6*(1,2) + 1/6*(1,2,3) + 1/6*(1,3,2) + 1/6*(1,3),
2/3*() - 1/3*(1,2,3) - 1/3*(1,3,2), 1/6*() - 1/6*(2,3) - 1/6*(1,2) +
1/6*(1,2,3) + 1/6*(1,3,2) - 1/6*(1,3)]

To multiply two elements together, you can simply write out a ∗ b. To add them, write
a+ b. We interpret () as the identity permutation, and can pass a permutation (python list)
[x1, ..., xn] through to the algebra and return an element in the algebra using CSk([x1, ..., xn]):

print CSk([2,1])
print CSk_idem[0]*CSk([2,1])

(1,2)
1/6*() + 1/6*(2,3) + 1/6*(1,2) + 1/6*(1,2,3) + 1/6*(1,3,2) + 1/6*(1,3)

With so much of the work already done for us, we just need to find a way to interpret an
element in the algebra and build a true algebra homomorphism ρ : CSk → End(V).

CSk_basis=[p for p in SymmetricGroup(k)]
print CSk_basis

[(), (1,3,2), (1,2,3), (2,3), (1,3), (1,2)]

After building a basis set, we can obtain the k!- vector of coefficients from any idempotent.

s=CSk_idem[1]
v=zero_vector(QQbar, factorial(k))
print s
for i in range(0,factorial(k)):

v[i]=s.coefficient(CSk_basis[i])
print v

2/3*() - 1/3*(1,2,3) - 1/3*(1,3,2)
(2/3, -1/3, -1/3, 0, 0, 0)

10

Now as long as we can define ρ on each element of Sk, we can express the endomorphism as
the sum of matrices with these coefficients. So let’s bring back our ρ function from last time:

def rho_local(g,n,k):
z=zero_matrix(n^k)
for j in range(0,n^k):

l=NN(j).digits(n)
s=[0]
while len((n^k-1).digits(n))-len(l) !=0:

l=l+s
l.reverse()
perm="("+str(j)+","
m=g(l)
m.reverse()
y=0
for i in range(len(l)):

y+=m[i]*n^i
perm+=str(y)+")"
for i in range(0,n^k):

if i==y:
z[i,j]=1

return z

def vectorize_element(s,k):
v=zero_vector(QQbar, factorial(k))
for i in range(0,factorial(k)):

v[i]=s.coefficient(CSk_basis[i])
return v

Now, we can define a morphism on the symmetric group algebra:

def rho(s,n,k):
vec=vectorize_element(s,k)
mat=zero_matrix(QQbar,n^k)
for i in range(0,factorial(k)):

m=rho_local(CSk_basis[i],n,k)
mat+=vec[i]*m

return mat

Now we will use everything we made to see what our idempotent endomorphisms look like:

k=2
n=3
CSk=SymmetricGroup(k).algebra(QQbar)
CSk_idem=CSk.central_orthogonal_idempotents()
CSk_basis=[p for p in SymmetricGroup(k)]

for s in CSk_idem:
M= rho(s,n,k)
print M
print "The rank of this matrix is: " + str(M.rank())

[1 0 0 0 0 0 0 0 0]
[0 1/2 0 1/2 0 0 0 0 0]
[0 0 1/2 0 0 0 1/2 0 0]
[0 1/2 0 1/2 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1/2 0 1/2 0]
[0 0 1/2 0 0 0 1/2 0 0]
[0 0 0 0 0 1/2 0 1/2 0]
[0 0 0 0 0 0 0 0 1]
The rank of this matrix is: 6
[0 0 0 0 0 0 0 0 0]

11

[0 1/2 0 -1/2 0 0 0 0 0]
[0 0 1/2 0 0 0 -1/2 0 0]
[0 -1/2 0 1/2 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1/2 0 -1/2 0]
[0 0 -1/2 0 0 0 1/2 0 0]
[0 0 0 0 0 -1/2 0 1/2 0]
[0 0 0 0 0 0 0 0 0]
The rank of this matrix is: 3

Just as we had hoped, the rank sums up to the dimension of V . We will now try various
values of n, k and see if the column spaces of these matrices intersect trivially, thereby telling
us that V is the direct sum of projected spaces, and check if each projected space is invariant
under the generators of Sk, telling us that V has a subspace that decomposes as an CSk
module. Lastly, we see if the ranks of the matrices sum up to the dimension of V , telling us
that V in fact admits this decomposition.

4.1 Sanity check

Just to make sure everything works for small values of n, k, the following code will cycle
through the actions of the algebra to make sure we have our full decomposition of the module:

for n in range(2,4):
for k in range(2,4):

print "Using n = "+str(n)+" and k = "+str(k)+": "

Sk=SymmetricGroup(k)
CSk=SymmetricGroup(k).algebra(QQbar)
CSk_idem=CSk.central_orthogonal_idempotents()
CSk_basis=[p for p in SymmetricGroup(k)]
mat_list=[]
for s in CSk_idem:

mat_list.append(rho(s,n,k))
dim_sum=0
for M in mat_list:

dim_sum+=M.rank()
Mcol=M.column_space()
for N in mat_list:

if M!=N:
Ncol=N.column_space()
IntSpace=Mcol.intersection(Ncol)
if IntSpace.dimension()!=0:

print "ERROR"
break

for g in Sk.gens():
gMat=rho_local(g,n,k)
Mact=(gMat*M).column_space()
if not Mact.is_subspace(Mcol):

print "Error"
break

if dim_sum != n^k:
print "Error"
break

print "All checks out!"

Using n = 2 and k = 2:
All checks out!

12

Using n = 2 and k = 3:
All checks out!
Using n = 3 and k = 2:
All checks out!
Using n = 3 and k = 3:
All checks out!

5 Brauer algebra idempotents

The Brauer Algebra, Bk(z), is an important subalgebra of the Partition Algebra, Pk(z).
We view Pk(z) as the set of partitions of {−k, ...,−1, 1, ..., k}. The element z ∈ C is the
deformation parameter of the algebra, and simply gives us a means to scale the product of
two partitions should a “loop” occur. The product of two partitions, a, b is the partition a ∗ b
obtained by identifying the positive elements of a with their negative counterparts of b and
forming a new partition that way. Call this new partition c. Then a ∗ b = zm

a
b c, where ma

b is
the number of loops formed. Two partitions form a loop if {−i,−j} is in b and {i, j} is in a.

For example, when k = 2, let’s take a = {{1, 2}, {−1,−2}}. Then a ∗ a = za, because
of the occurence of a loop. Now let k = 3, a = {{1, 2}, {−1,−2}, {3,−3}}, and b =
{{1,−1}, {−2,−3}, {2, 3}}. Then b ∗ a = {{1, 2}, {−1, 3}, {−2,−3}}. The symmetric group
algebra is actually a subalgebra of the partition algebra, but it does not require a deformation
parameter because no loops can occur with the partition presentation of Sk. If σ is a
permutation, then its diagram in Pk(z) is simply the partition {{1,−σ(1)}, ..., {k,−σ(k)}}.
In which case, the product of two permutation diagrams is akin to function composition of
the two permutations.

Pk(z) has a well defined action on V = (Cn)⊗k. Let d be a diagram in Pk, i.e. a basis vector.
Then the action of d on a tensor is given as:

d · (vi1 ⊗ ...⊗ vik) =
∑

1≤i−1,...,i−k≤n

δ(d)i−1,...,i−k
i1,...,ik

vi−1 ⊗ ...⊗ vi−k ,

where

δ(d)i−1,...,i−k
i1,...,ik

is 1 if {s,t} with s, t ∈ {−k, ...,−1, 1, ..., k} are in the same block ({s, t} is a
connected component of d) implies is = it. It is 0 otherwise. We extend that action C-linearly,
and define it that way on Pk(z). For a presentation of the Brauer and Partition algebras,
we refer the reader to a paper by Arun Ram and Tom Halverson [HaRa]. This paper also
explains which Lie groups/Lie algebras are central to the various diagram algebras, and how
multiplication of the algebra elements works. But for our purposes, we will just focus on the
algebras themselves.

It is often helpful to view partitions using diagrams, and SAGE provides tools for just that.

import sage.combinat.diagram_algebras as da

def partition_to_graph(m,k):
g=da.to_graph(m)
pos_dict={}
for j in range(-k,0):

pos_dict[j]=[-cos(pi*(-j)/(k+1)),sin(pi*(-j)/(k+1))]
for j in range(1,k+1):

pos_dict[j]=[-cos(pi*(-j)/(k+1)),sin(pi*(-j)/(k+1))]
return g.graphplot(pos=pos_dict,vertex_size=150,vertex_color='white',figsize=1.7)

B4=SetPartitionsBk(4)
s=B4[3]
print s
partition_to_graph(s,4).show(figsize=1.7)

{{-4, 1}, {-3, 3}, {-2, 2}, {-1, 4}}

13

This element is actually in the Symmetric Group, S4, and we can identify it with the
permutation (1 4). Let n = 2, k = 4. We should want that e1 ⊗ e1 ⊗ e1 ⊗ e2 is sent to
e2 ⊗ e1 ⊗ e1 ⊗ e1 under this permutation. Surely enough, δ(d)i−1,i−2,i−3,i−4

1,1,1,2 will be zero
everywhere except for (i−1, i−2, i−3, i−4) = (2, 1, 1, 1).

Brauer diagrams can be defined as the partitions of Pk for which every set in the partition
has cardinality 2.

Here’s a really basic, but important element of B2(z) :

B2=SetPartitionsBk(2)
s=B2[2]
print s
partition_to_graph(s,2).show(figsize=1.7)

{{-2, -1}, {1, 2}}

With n = 2, this element will do the following to our simple basis tensors:

e1 ⊗ e1 7→ e1 ⊗ e1 + e2 ⊗ e2

e2 ⊗ e1 7→ 0

e1 ⊗ e2 7→ 0

e2 ⊗ e2 7→ e1 ⊗ e1 + e2 ⊗ e2

As a matrix representation, this would look like:

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

So how can we generalize this to the fullest extent for any n and any k? We need to define a
representation, ψ : Bk(z)→ End(V). Just like last time, we will be using the set {0, ..., n−1}
to index our basis vectors ei in order to create a convention on the n-ary expansion of the
vector corresponding to (i1, ..., ik). What we will do differently is define our local function
not on the Symmetric Group, but on the Set Partitions themselves. This serves as a basis,
but we do not get a simple permutation as a group action on the list (i1, ..., ik) like we did
with the basis set Sk. So, we need to get a little more creative. The upshot here is that we
can adapt this setup for any general diagram algebra, and not just Bk.

14

One obstacle to overcome is defining the δ function. How do we tell that two vertices are
connected in our graph? One thing we can do is find all of the connected components of the
graph itself!

def connected_components(m):
collection=[]
for X in m:

collection.append(X)

subsetsofsizetwo=[]
for X in collection:

for Y in Set(X).subsets(2):
subsetsofsizetwo.append(Y)

return subsetsofsizetwo

Let’s see if this works!

P4=SetPartitionsPk(4)
s=P4[1]
print s
partition_to_graph(s,4).show(figsize=2.7)

print connected_components(s)

{{-4, -3, -2, -1, 1, 2, 3}, {4}}

[{1, 2}, {1, 3}, {1, -1}, {1, -4}, {1, -3}, {1, -2}, {2, 3}, {2, -1}, {2,
-4}, {2, -3}, {2, -2}, {3, -1}, {3, -4}, {3, -3}, {3, -2}, {-4, -1},
{-3, -1}, {-2, -1}, {-4, -3}, {-4, -2}, {-3, -2}]

Knowing what two vertices are connected in our graph should make defining δ a breeze.

def delta(m,k,pos_index=[],neg_index=[]):
"""
returns 0 or 1
pos/neg_index are lists of size k with entries {0,...,n-1}
"""
#first we check the for the negation of {r,s}-->i_r=i_s
del_dict={}
for i in range(1,k+1):

del_dict[i]=pos_index[i-1]
for i in range(-k,0):

del_dict[i]=neg_index[-i-1]
ConnectedComp=connected_components(m)
for x in ConnectedComp:

if del_dict[x[0]] != del_dict[x[1]]:
return 0

#since the negation is false, we must have that delta is 1
return 1

15

Let’s look at δ1,1,1,1
1,1,1,2((1 4)) and δ2,1,1,1

1,1,1,2((1 4)):

B4=SetPartitionsBk(4)
s=B4[3]
partition_to_graph(s,4).show(figsize=1.7)

print "delta(s,k,[1,1,1,2],[1,1,1,1]) is: "
print delta(s,4,[1,1,1,2],[1,1,1,1])
print "delta(s,k,[1,1,1,2],[2,1,1,1]) is: "
print delta(s,4,[1,1,1,2],[2,1,1,1])

delta(s,k,[1,1,1,2],[1,1,1,1]) is:
0
delta(s,k,[1,1,1,2],[2,1,1,1]) is:
1

Now, let’s define ψ on the basis elements of Pk:

def psi_local(m,n,k):
z=zero_matrix(n^k)
for j in range(0,n^k): #columns

l=NN(j).digits(n) #list of base n digits
l.reverse() #read right to left in expansion
s=[0]
while len((n^k-1).digits(n))-len(l) !=0:

l=s+l
for i in range(0,n^k): #rows

h=NN(i).digits(n)
h.reverse()
while len((n^k-1).digits(n))-len(h) !=0:

h=s+h
z[i,j]=delta(m,k,l,h)

return z

This next chunk of code will let us know if everything is running smoothly:

n=2
k=2
Sk=SetPartitionsSk(k)
transposition=Sk[1]
print str(transposition)+" is identified with the permutation (1 2)."
print "It can be visualized as: "
partition_to_graph(transposition,k).show(figsize=1.7)
print "Then rho((1 2))=psi((1 2)):"
print psi_local(transposition,n,k)
print "Just to be sure, when n=2,k=3:"
k=3
Sk=SetPartitionsSk(k)
transposition=Sk[2]
print str(transposition)+" goes to (1 2)"
print "It can be visualized as: "
partition_to_graph(transposition,k).show(figsize=1.7)
print "And it's representation is: "
print psi_local(transposition,n,k)

16

print ""
print "Now for some random old diagram: "
Sk=SetPartitionsPk(k)
s=Sk[21]
print s
print "It can be visualized as: "
partition_to_graph(s,k).show(figsize=1.7)
print "And it's representation is: "
print psi_local(s,n,k)

{{-2, 1}, {-1, 2}} is identified with the permutation (1 2).
It can be visualized as:

Then rho((1 2))=psi((1 2)):
[1 0 0 0]
[0 0 1 0]
[0 1 0 0]
[0 0 0 1]
Just to be sure, when n=2,k=3:
{{-3, 3}, {-2, 1}, {-1, 2}} goes to (1 2)
It can be visualized as:

And it's representation is:
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]

Now for some random old diagram:
{{-3, -2, 3}, {-1, 1, 2}}
It can be visualized as:

17

And it's representation is:
[1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1]

More exotic examples!

n=2;k=3
Ak=SetPartitionsAk(k)
Bk=SetPartitionsBk(k)
Pk=SetPartitionsPk(k)
a=Ak[3]
b=Bk[0]
p=Pk[1]

print str(a) + " from A_k has diagram: "
partition_to_graph(a,k).show(figsize=2.0)
print "and it's representation is: "
print psi_local(a,n,k)
print ""

print str(b) + " from B_k has diagram: "
partition_to_graph(b,k).show(figsize=2.0)
print "and it's representation is: "
print psi_local(b,n,k)
print ""

print str(p) + " from P_k has diagram: "
partition_to_graph(p,k).show(figsize=2.0)
print "and it's representation is: "
print psi_local(p,n,k)
print ""

{{-3, -2, -1, 1}, {2, 3}} from A_k has diagram:

and it's representation is:
[1 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]

18

[0 0 0 0 1 0 0 1]

{{-3, 1}, {-2, 2}, {-1, 3}} from B_k has diagram:

and it's representation is:
[1 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 1]

{{-3, -2, -1, 1, 2}, {3}} from P_k has diagram:

and it's representation is:
[1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 1]

Now, we go on to define ψ on an arbitrary element of the Brauer algebra.

def vectorize_element_Bk(s,lst):
vec=zero_vector(QQbar,len(lst))
for i in range(0,len(lst)):

vec[i]=s.coefficient(lst[i])
return vec

def psi_Bk(v,n,k):
lst=da.BrauerDiagrams(k).list() #basis
vec=vectorize_element_Bk(v,lst) #coefficient vector
mat=zero_matrix(QQbar,n^k)
for i in range(0,len(lst)):

if vec[i]!=0:

19

mat+=vec[i]*psi_local(lst[i],n,k)
return mat

Let’s see what it gets us for a Jucys Murphy element of the algebra!

k=3
n=2
Bk_alg=BrauerAlgebra(k,n,QQbar)
v=Bk_alg.jucys_murphy(3)
print "The element is: "
print v
print "It's action on V is: "
print psi_Bk(v,n,k)

The element is:
-B{{-3, -2}, {-1, 1}, {2, 3}} - B{{-3, -1}, {-2, 2}, {1, 3}} + B{{-3, 1},

{-2, 2}, {-1, 3}} + B{{-3, 2}, {-2, 3}, {-1, 1}} + 1/2*B{{-3, 3}, {-2,
2}, {-1, 1}}

It's action on V is:
[1/2 0 0 -1 0 -1 0 0]
[0 1/2 1 0 1 0 0 0]
[0 1 1/2 0 0 0 0 -1]
[-1 0 0 1/2 0 0 1 0]
[0 1 0 0 1/2 0 0 -1]
[-1 0 0 0 0 1/2 1 0]
[0 0 0 1 0 1 1/2 0]
[0 0 -1 0 -1 0 0 1/2]

The Jucys-Murphy elements give us a means to calculate the idempotents of a multiplicity-
free family of unital algebras. Therefore, knowing the Jucys-Murphy elements and the
combinatorics behind the Induction and Restriction operations on the family gives us a
recursive formula for the idempotents of the irreducible representations of Bk(z). Our
methods closely follow those of Stephen Doty, Aaron Lauve, and George H. Seelinger, and
we refer their paper to the reader to review before proceeding further [DoLaSe].

Let λ be in the indexing set for the irreps of Bk(z), Tab(k). Let µ be in the indexing set for
the irreps of Bk−1(z), Tab(k − 1). The Jucys-Murphy sequence (J0, J1, ..., Jk) can be seen
as elements in Bk(z) by inclusion.

If T = (λ0, ..., λk = λ) corresponds to the Gelfand-Tsetlin basis element vT , and S =
(µ0, ..., µk) corresponds to vS , we define:

cT (k) =
{
j − i if λk has one more box than than λk−1

(1− z) + i− j if λk has one less box than than λk−1

The Gelfand-Tsetlin basis for Bk(z)λ is the set {vT : T ∈ Tab(k)}. For T = (λ0, ..., λk),
the truncation is the element T̄ = (λ0, ..., λk−1) ∈ Tab(k − 1). We define the interpolating
polynomial as:

PT (x) =
∏

S∈Tab(k) S 6=T S̄=T̄

x− cS(k)
cT (k)− cS(k)

We usually use the notation Pλµ to denote that this function really only depends on the µ’s
for which µ = λn−1 (we say then that µ ` λ). Finally, we obtain a recursive formula for the
idempotent of λ as:

eλ =
∑
µµ`λ

Pλµ (Jk)eµ

20

In general, the sum zk = J1 + ... + Jk is in the center of Bk(z) and it acts diagonally on
Bk(z)λ. The T content of Jk is the C vector (cT (1), ..., cT (k)), where Jm · vT = cT (m)vT .
This can be shown pretty straightforwardly, since Jm = zm − zm−1 and vT = vT̄ . Therefore,
for µ with µ = λk−1, zk · vT = aλvT and zk−1 · vT = aµvT and it follow that cT (k) = aλ− aµ.

In order to make this work, we need a Jucys-Murphy sequence that agrees with the T
content. We will follow the cue of Stephen Doty, Aaron Lauve, AND George H. Seelinger
(https://arxiv.org/pdf/1606.08900.pdf) and define our sequence as follows:

Jk =
k−1∑
i=1

[(i k)− (i k)]

with J1 = 0, (i k) = {{1,−1}, ..., {i,−k}, {i+ 1,−(i+ 1)}, ..., {k,−i}}, the standard transpo-
sition, and (i k) = {{1,−1}, ..., {i, k}, {−i,−k}, {i+ 1,−(i+ 1)}, ..., {k − 1,−(k − 1)}}, the
cap-cup.

For example:

k=4
Sk=SetPartitionsBk(k)
s=Sk[45]
d=Sk[58]
print d
print "The element (1 3) in B_4(z) is: "
print s
partition_to_graph(s,k).show(figsize=2.2)
print "The cap-cup version of (1 3) is:"
print d
partition_to_graph(d,k).show(figsize=2.5)

{{-4, 4}, {-3, -1}, {-2, 2}, {1, 3}}
The element (1 3) in B_4(z) is:
{{-4, 4}, {-3, 1}, {-2, 2}, {-1, 3}}

The cap-cup version of (1 3) is:
{{-4, 4}, {-3, -1}, {-2, 2}, {1, 3}}

21

Now let’s work out a function that gives us the Jucys-Murphy elements we want. People
have already implemented Jucys-Murphy elements for the Brauer algebra in SAGE, but they
differ from the ones we want by z−1

2 .

def our_jucys_murphy(n,k,z,R=QQbar):
Bk=BrauerAlgebra(k,z,R)
assert(n<=k)
s=Bk.jucys_murphy(n)
z=s-((z-1)/2)
return z

The business with the boxes lets us interpret Tab(k) as a set of integer partitions, i.e. [3, 1, 1]
corresponds to:

p=Partition([3,1,1])
p.pp()

*
*

The pair (i, j) is the (row,column) location of a box (in our case asterisk) in the partition.
The content of a box is the value j − i. We can print the contents like this:

p=Partition([5,4,3,2,1])
p.pp()
p.contents_tableau().pp()

**
*

0 1 2 3 4
-1 0 1 2
-2 -1 0
-3 -2
-4

The contents of boxes added or removed becomes a vital part of how we understand the
action of the Jucys-Murphy elements on the GT basis of our algebra. Let us first try and
understand what the simple subalgebras of Bk(z) look like. We assume that either z > k
when z is an integer, or z ∈ C\Z so that Bk(z) = Bk is semisimple.

It can be shown for example that the set of irreducible representations are indexed by the
following partitions:

Irr(k) = {λ : λ ` (k − 2l), 0 ≤ 2l ≤ k}

.

We understand λ ` (k− 2l) to mean that the partition sums up to k− 2l, e.g. [2] is in Irr(4)
because it sums up to 2 = 4− 2, but [1, 1, 1] is not because its sum is 3 6= 4− 2l. Let’s create
a function that returns a list of such partitions:

def list_of_brauer_irreducibles(k):
if k==0:

return [Partition([])]
lst=[]
possible_sums=[]

for w in range(0,k+1):
if w%2==0: #even

22

possible_sums.append(k-w)
for x in possible_sums:

for y in Partitions(x):
lst=[y]+lst

return lst

And to draw them out:

def partition_to_figure_list(p):
lst=[]
i=0
for y in p:

for z in range(0,y):
lst+=[polygon2d([[z,i],[z+1,i],[z+1,i+1],[z,i+1]],edgecolor='black',fill=False)]

i=i-1
return lst

def plot_partition_figure_list(lst):
plotlst=[]
for x in lst:

plotlst+=[plot(x)]
show(sum(plotlst),axes=False,figsize=1.2)

x=Partition([3,2,1])
plot_partition_figure_list(partition_to_figure_list(x))

Now all of the kth irreps can be viewed as:

for x in list_of_brauer_irreducibles(3):
plot_partition_figure_list(partition_to_figure_list(x))

The empty partition [] will appear as a 0. One could use these objects as vertices, and
program a Bratelli Diagram as a graph, which would help in understanding the GT basis for

23

each irreducible representation. But for our purposes, we will focus namely on computing
idempotents. We will view elements of the GT basis as k + 1 vectors of partitions T =
(λ0, ..., λk). Let us begin by defining cT (k):

def T_content_at_k(T,k,z):
M=Set(T[k].cells())
N=Set(T[k-1].cells())
if T[k].size()>T[k-1].size():

O=M.difference(N)
return ZZ(O[0][0])-ZZ(O[0][1])

else:
O=N.difference(M)
return ZZ(O[0][1])-ZZ(O[0][0])+1-z

Let’s look at both cases:

k=3
T={}
T[k]=Partition([3,2,1])
T[k-1]=Partition([3,2])
print T_content_at_k(T,k,0)

2

The content of the box missing! Now if instead we look at T [k] = [3, 2] and T [k−1] = [3, 2, 1],
λk has one less box than λk−1, the box at (i, j) = (2, 0). Let z = 0, then cT (k) = 1−z+i−j =
1− 0 + 2− 0 = 3. Let’s see if it worked.

T={}
T[k]=Partition([3,2])
T[k-1]=Partition([3,2,1])
print T_content_at_k(T,k,0)

-1

Now given a partition λk, how do we get the list of partitions µ such that µ can have a box
added or removed to become λk? Well, we already know what partitions are available at the
level k − 1!

def permissible_paths_to_partition(P,k):
assert(P in list_of_brauer_irreducibles(k))
lst=[]
box_num=len(P.cells())
for x in list_of_brauer_irreducibles(k-1):

if abs(len(x.cells())-box_num)==1:
lst+=[x]

new_lst=[]
for x in lst:

if box_num-len(x.cells())==1:
for y in P.cells():

if y in x.addable_cells():
if x.add_cell(y[0])==P:

new_lst+=[x]
elif box_num-len(x.cells())==-1:

for y in x.cells():
if y in x.removable_cells():

if x.remove_cell(y[0])==P:
new_lst+=[x]

return new_lst

d=Partition([3,1])
plot_partition_figure_list(partition_to_figure_list(d))

24

for x in permissible_paths_to_partition(d,4):
plot_partition_figure_list(partition_to_figure_list(x))

In order to get a list for the GT basis, we need to recursively find all possible paths. We
employ the use of a global list variable,GT_basis, to keep track of the paths, and a recursive
Depth-First Search algorithm to do so. We pass a list and an integer every time in order to
add this new partition to the list.

It is important to always initialize GT_basis with GT_basis=[] before running this function.
Otherwise, it will just keep adding paths.

def GelfandTsetlinBasis(P,k,GT_basis,path=[]):
path+=[P]
if k==0:

GT_basis.append(list(path))
#python passes a list by reference,
#so we use list() to create a new one

branches=permissible_paths_to_partition(P,k)
for x in branches:

GelfandTsetlinBasis(x,k-1,GT_basis,path)
path.pop(len(path)-1)

Just in case any duplicates arise, let’s define a function to take care of that! And let’s look
at an example.

def list_of_tableaus_to_partition(P,k):
GT_list=[]
GelfandTsetlinBasis(P,k,GT_list,[])
GT_basis=[]
for x in GT_list:

x.reverse() # read paths to start at level k=0
for x in GT_list: # gets rid of duplicates

if x not in GT_basis:
GT_basis.append(x)

return GT_basis

As an example:

d=Partition([3,2])
plot_partition_figure_list(partition_to_figure_list(d))
list_of_tableaus_to_partition(d,5)

25

[[[], [1], [1, 1], [2, 1], [2, 2], [3, 2]],
[[], [1], [2], [2, 1], [2, 2], [3, 2]],
[[], [1], [1, 1], [2, 1], [3, 1], [3, 2]],
[[], [1], [2], [2, 1], [3, 1], [3, 2]],
[[], [1], [2], [3], [3, 1], [3, 2]]]

Let T be a tableau of k + 1 partitions, and Ti correspond to its truncation taken k − i times.
This way Tk = T , and T0 = (λ0). We use T [k] to denote the partition entry of the tableau
at the kˆ{th} level. Then the idempotent of the Gelfand-Tsetlin vector vT in the algebra
corresponding to the partition T [k] is given as:

eT =
k∏
i=1

PTi(Ji)

,

where Ji is the ith Jucys-Murphy element. The idempotent then corresponding to the
partition T [k] is given as:

eT [k] =
∑

T∈Tab(k)

eT

Let’s try and program a way to truncate tableaus:

def truncate_tableau(T,k,i):
#take a tableau at the k^{th} level and truncate it k-i times
S=[]
S=list(T)
if i == k:

return S
for p in range(0,k-i):

S.pop()
return S

Now to define the interpolating polynomial given a tableau T with k+1 entries:

def interpolating_polynomial(x,T,k,z):
assert(T[k] in list_of_brauer_irreducibles(k))
Bk_alg=BrauerAlgebra(k,z,QQbar)
iden=Bk_alg.one()
val=iden
if k==0:

return val
lst=[]
brauer_irred_lst=list_of_brauer_irreducibles(k)
for t in brauer_irred_lst:

tmp_lst=list_of_tableaus_to_partition(t,k)
for y in tmp_lst:

lst.append(y)
lst.remove(T)
truncatedT=truncate_tableau(T,k,k-1)
new_lst=[]
for S in lst:

truncatedS=truncate_tableau(S,k,k-1)
if truncatedS==truncatedT and T!=S:

26

new_lst.append(S)
if len(new_lst)==0:

return iden
c_T=T_content_at_k(T,k,z)
for S in new_lst:

c_S=T_content_at_k(S,k,z)
new_val=(x-c_S*iden)*((1/(c_T-c_S))*iden)
val=val*new_val

return val

k=4
z=10
Bk_alg=BrauerAlgebra(k,z,QQbar)
elem=Bk_alg.jucys_murphy(3)
iden=Bk_alg.one()
print "The element we want to pass through P_T:"
print elem
lst=list_of_tableaus_to_partition(Partition([2,2]),4)
print "The T we are going to use to do it:"
vec=lst[0]
print vec
print "The final result:"
print interpolating_polynomial(elem,vec,k,z)
print "In vector form:"
print vectorize_element_Bk(interpolating_polynomial(elem,vec,k,z),SetPartitionsBk(k).list())

The element we want to pass through P_T:
-B{{-4, 4}, {-3, -2}, {-1, 1}, {2, 3}} - B{{-4, 4}, {-3, -1}, {-2, 2}, {1,

3}} + B{{-4, 4}, {-3, 1}, {-2, 2}, {-1, 3}} + B{{-4, 4}, {-3, 2}, {-2,
3}, {-1, 1}} + 9/2*B{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}

The T we are going to use to do it:
[[], [1], [1, 1], [2, 1], [2, 2]]
The final result:
139/80*B{{-4, 4}, {-3, -2}, {-1, 1}, {2, 3}} - 11/128*B{{-4, 4}, {-3, -2},

{-1, 2}, {1, 3}} + 419/640*B{{-4, 4}, {-3, -2}, {-1, 3}, {1, 2}} -
11/128*B{{-4, 4}, {-3, -1}, {-2, 1}, {2, 3}} + 139/80*B{{-4, 4}, {-3,
-1}, {-2, 2}, {1, 3}} + 419/640*B{{-4, 4}, {-3, -1}, {-2, 3}, {1, 2}} +
419/640*B{{-4, 4}, {-3, 1}, {-2, -1}, {2, 3}} - 1089/160*B{{-4, 4},

{-3, 1}, {-2, 2}, {-1, 3}} - 891/640*B{{-4, 4}, {-3, 1}, {-2, 3}, {-1,
2}} + 419/640*B{{-4, 4}, {-3, 2}, {-2, -1}, {1, 3}} - 891/640*B{{-4,
4}, {-3, 2}, {-2, 1}, {-1, 3}} - 1089/160*B{{-4, 4}, {-3, 2}, {-2, 3},
{-1, 1}} + 27/160*B{{-4, 4}, {-3, 3}, {-2, -1}, {1, 2}} - 9/40*B{{-4,
4}, {-3, 3}, {-2, 1}, {-1, 2}} - 61317/5120*B{{-4, 4}, {-3, 3}, {-2,
2}, {-1, 1}}

In vector form:
(0, 0,

0, -1089/160,
-891/640, 419/640, -891/640, -1089/160, 419/640, -9/40, -61317/5120,

27/160, 139/80, -11/128, 419/640, -11/128, 139/80, 419/640, 0, 0, 0, 0,
0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Before we can begin multiplying elements in Bk−i with those in Bk, we need to find a way to
inject one into another. Otherwise, we will turn up an error. The injection is pretty simple.
If v is in Bk−i, then every diagram of v is passed into a diagram of rank k by adding the
pairs {(k − i+ 1),−(k − i+ 1)}, ..., {k,−k}.

def inject_kminusi_into_k_local(d,k,i):
lst=[]
for x in d:

lst+=[x]

27

Bk=da.BrauerDiagrams(k)
for x in range(k-i+1,k+1):

lst+=[(-x,x)]
return Bk(Set(lst))

Now we define it for arbitrary algebra elements:

def inject_kminusi_into_k(v,k,i,z):
Bk_alg=BrauerAlgebra(k,z,QQbar)
val=Bk_alg.zero()
kminusibasis=da.BrauerDiagrams(k-i).list()
kminusivec=vectorize_element_Bk(v,kminusibasis)
for y in range(0,len(kminusibasis)):

if kminusivec[y]!=0:
val+=kminusivec[y]*Bk_alg(inject_kminusi_into_k_local(kminusibasis[y],k,i))

return val

And test to see if it works:

k=4
i=2
z=5
Bk_alg=BrauerAlgebra(k,z)
Bkminusi_alg=BrauerAlgebra(k-i,z)
elem=Bkminusi_alg.jucys_murphy(2)
print elem
kminusibasis=da.BrauerDiagrams(k-i).list()
Bk=da.BrauerDiagrams(k)
inject_kminusi_into_k(elem,k,i,z)

-B{{-2, -1}, {1, 2}} + B{{-2, 1}, {-1, 2}} + 2*B{{-2, 2}, {-1, 1}}

-B{{-4, 4}, {-3, 3}, {-2, -1}, {1, 2}} + B{{-4, 4}, {-3, 3}, {-2, 1}, {-1,
2}} + 2*B{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}

The idempotent of a tableau can be acquired as:

eT =
k∏
i=1

PT [i](Ji)

def idempotent_of_tableau_at_k(T,k,z):
Bk_alg=BrauerAlgebra(k,z,QQbar)
J={}
prod=Bk_alg.one()
if k==0:

return prod
for y in range(1,k+1):

J[y]=our_jucys_murphy(y,y,z)
F=[]
F=list(T)
for j in range(0,k):

val=interpolating_polynomial(J[k-j],F,k-j,z)
F=truncate_tableau(F,k,k-1)
new_val=inject_kminusi_into_k(val,k,j,z)
prod=new_val*prod

return prod

28

The idempotent of a partition T [k] is then the sum:

eT [k] =
∑

S∈Irr(k) S[k]=T [k]

eS

def idempotent_of_partition_at_k(P,k,z):
Bk_alg=BrauerAlgebra(k,z,QQbar)
val_sum=Bk_alg.zero()
basis=da.BrauerDiagrams(k)
if k==0:

return Bk_alg.one()
lst=list_of_tableaus_to_partition(P,k)
for x in lst:

idempotent_of_x=idempotent_of_tableau_at_k(x,k,z)
val_sum+=idempotent_of_x

return val_sum

5.1 Sanity checks

Lastly, we check if these are indeed the primitive, central, mutually orthogonal idempotents
we seek! We must have that:

1. eT eS = 0 for T 6= S
2. e2

T = eT for all T
3.
∑
eT = 1

This chunk of code will test for all of that:

k=4
z=5
Bk_alg=BrauerAlgebra(k,z,QQbar)
lst=list_of_brauer_irreducibles(k)
basis=da.BrauerDiagrams(k)
the_sum=Bk_alg.zero()
for p in lst:

x=idempotent_of_partition_at_k(p,k,z)
the_sum+=x
print "Testing the partition:"
plot_partition_figure_list(partition_to_figure_list(p))
print "Is e_T^2=e_T?"
if x^2==x:

print "Yes!"
else:

print "No!"
print "Is it mutually orthogonal with the rest?"
flag=True
for q in lst:

if q!=p:
y=idempotent_of_partition_at_k(q,k,z)
if x*y!=0:

flag=False
if flag:

print "Yes!"
else:

print "No!"
print "The sum of all these idempotents are:"
print the_sum

Testing the partition:

29

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

30

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
Testing the partition:

Is e_T^2=e_T?
Yes!
Is it mutually orthogonal with the rest?
Yes!
The sum of all these idempotents are:
B{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}

And now we can figure out what representations of these idempotents project onto isotypic
components corresponding to these partitions, deduce from the ranks of these matrices and
the dimensions of the irreducible submodules of Bk(z) exactly how our spaces decompose.
The size of the Gelfand-Tsetlin basis will tell us exactly what this dimesnion is.

It is important to note that Bk(z) is semisimple for positive integers n only when n ≥ k. We
could potentially run into division by zero errors from the interpolating polynomial functions.
Let’s try an example.

k=3
n=3
Bk_alg=BrauerAlgebra(k,n,QQbar)
lst=list_of_brauer_irreducibles(k)
mat_sum=zero_matrix(n^k)
for p in lst:

x=idempotent_of_partition_at_k(p,k,n)
print "Testing the partition:"
plot_partition_figure_list(partition_to_figure_list(p))
print "The dimension of this submodule is: "
l=len(list_of_tableaus_to_partition(p,k))
print l
mat_x=psi_Bk(x,n,k)
print "The rank of the representation of the corresponding idempotent is: "

31

r=mat_x.rank()
print r
print "Therefore, the irreducible representation of this element decomposes into :"
print str((r/l))+" copies of the submodule"
mat_sum+=mat_x

print "Do the representations sum up to the identity?"
if mat_sum.is_one():

print "Yes!"
else:

print "No!"

Testing the partition:

The dimension of this submodule is:
3
The rank of the representation of the corresponding idempotent is:
9
Therefore, the irreducible representation of this element decomposes into :
3 copies of the submodule
Testing the partition:

The dimension of this submodule is:
1
The rank of the representation of the corresponding idempotent is:
7
Therefore, the irreducible representation of this element decomposes into :
7 copies of the submodule
Testing the partition:

The dimension of this submodule is:
2
The rank of the representation of the corresponding idempotent is:
10
Therefore, the irreducible representation of this element decomposes into :
5 copies of the submodule
Testing the partition:

32

The dimension of this submodule is:
1
The rank of the representation of the corresponding idempotent is:
1
Therefore, the irreducible representation of this element decomposes into :
1 copies of the submodule
Do the representations sum up to the identity?
Yes!

Now, to see what some of these matrix representations of idempotents in End(V) look like,
let’s try some smaller values for k:

k=2
n=3
Bk_alg=BrauerAlgebra(k,n,QQbar)
lst=list_of_brauer_irreducibles(k)
mat_sum=zero_matrix(QQbar,n^k)
for p in lst:

x=idempotent_of_partition_at_k(p,k,z)
print "Testing the partition:"
plot_partition_figure_list(partition_to_figure_list(p))
print "The dimension of this submodule is: "
l=len(list_of_tableaus_to_partition(p,k))
print l
mat_x=psi_Bk(x,n,k)
print mat_x
print "The rank of the representation of the corresponding idempotent is: "
r=mat_x.rank()
print r
print "Therefore, the irreducible representation of this element decomposes into :"
print str((r/l))+" copies of the submodule"
mat_sum+=mat_x

print "Do the representations sum up to the identity?"
if mat_sum.is_one():

print "Yes!"
else:

print "No!"
print mat_sum

Testing the partition:

The dimension of this submodule is:
1
[1/5 0 0 0 1/5 0 0 0 1/5]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[1/5 0 0 0 1/5 0 0 0 1/5]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[1/5 0 0 0 1/5 0 0 0 1/5]
The rank of the representation of the corresponding idempotent is:
1
Therefore, the irreducible representation of this element decomposes into :
1 copies of the submodule
Testing the partition:

33

The dimension of this submodule is:
1
[4/5 0 0 0 -1/5 0 0 0 -1/5]
[0 1/2 0 1/2 0 0 0 0 0]
[0 0 1/2 0 0 0 1/2 0 0]
[0 1/2 0 1/2 0 0 0 0 0]
[-1/5 0 0 0 4/5 0 0 0 -1/5]
[0 0 0 0 0 1/2 0 1/2 0]
[0 0 1/2 0 0 0 1/2 0 0]
[0 0 0 0 0 1/2 0 1/2 0]
[-1/5 0 0 0 -1/5 0 0 0 4/5]
The rank of the representation of the corresponding idempotent is:
6
Therefore, the irreducible representation of this element decomposes into :
6 copies of the submodule
Testing the partition:

The dimension of this submodule is:
1
[0 0 0 0 0 0 0 0 0]
[0 1/2 0 -1/2 0 0 0 0 0]
[0 0 1/2 0 0 0 -1/2 0 0]
[0 -1/2 0 1/2 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1/2 0 -1/2 0]
[0 0 -1/2 0 0 0 1/2 0 0]
[0 0 0 0 0 -1/2 0 1/2 0]
[0 0 0 0 0 0 0 0 0]
The rank of the representation of the corresponding idempotent is:
3
Therefore, the irreducible representation of this element decomposes into :
3 copies of the submodule
Do the representations sum up to the identity?
Yes!
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]

34

5.2 Moving forward

There is one crucial known bug with the following code. Because the polynomial is evaluated
term by term, any sort of cancellation that ought to occur to avoid a division by zero error
does not. In particular for the case where n = 3 and k = 4, there is a z − 4 term in the
denominator of the polynomial when passing the third Jucys-Murphy element through it
[DoLaSe, 31]. A potential solution is to return the polynomial, cancel out those terms, and
then pass the element through it.

As of writing this document, this implementation of the idempotents of the Brauer algebra is
being adapted to be called on as one would call for the idempotents of the symmetric group
algebra. The current branch can be found at https://trac.sagemath.org/ticket/28279.

In moving forward, our goals are to optimize our methods and work around the division by
zero error. We then aim to adapt this to the other subalgebras of the partition algebra, as
this general set up only requires that we know what the isomorphism classes as indexed by
partitions at the kth level are and a combinatorial formula for the content vectors.

The Kronecker coefficient problem is an open problem that revolves around the full decom-
position of the tensor product of Specht modules (symmetric group algebra modules that are
isomorphic to a simple symmetric group subalgebra) and the existence of a combinatorial
formula for the multiplicities of the isotypic components in the decomposition. In 2012, a
paper by Bowman, De Visscher, and Orellana explored the use of the partition algebra that
is the center of the action of the symmetric group on Kronecker products of Specht modules
[BoDVOr]. There is an important interplay between the two algebras, and understanding the
representation theory of the partition algebra may be key to solving this problem once and for
all. We saw previously that we may easily extract information about the Lie group/algebra
module decompositions just by knowing the dimension of the isotypic component, and the
rank of the associated idempotent’s image under the representation. By adapting this
method further, and exploring the robust relationship between Schur-Weyl duality and the
Artin-Wedderburn thoerems, we come ever closer to solving problems that have remained a
mystery for decades.

Acknowledgements

I would like to thank my mentor for this project, Dr. Zajj Daugherty, who has been incredibly
patient and kind to me throughout this project. With her guidance and assignments, I
was able to fully understand and appreciate the math that went into this field of study. I
would also like to thank the individuals of the Math Department at the City College of New
York and the proponents of the Dr. Barnett and Jean Hollander Rich Summer Internship
for funding my work this summer, and giving me the opportunity to undertake such an
important project to myself and the open-source community of mathematicians worldwide.

References

[Ja] Javornik, Pavel, “Scrapbook,” Pavel Javornik’s Personal Website. Web. (https://sites.
google.com/site/pjavornikmath/home/scrapbook/).

[SAGE] “SAGE,” SageMath. Web. (http://www.sagemath.org/).

[GoWall] Goodman, R.; Wallach, N.R., “Representations and Invariants of the Classical
Groups,” Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University
Press, 2000.

[HaRa] Halverson, T.; Ram, Arun, “Partition Algebras,” arXiv Mathematics e-prints. Web.
2004. (https://arxiv.org/abs/math/0401314)

[Ki] Kirillov, A. “An Introduction to Lie Groups and Lie Algebras,” Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2008.

35

https://trac.sagemath.org/ticket/28279
https://sites.google.com/site/pjavornikmath/home/scrapbook/
https://sites.google.com/site/pjavornikmath/home/scrapbook/
http://www.sagemath.org/
https://arxiv.org/abs/math/0401314

[DoLaSe] Doty, Stephen; Lauve, Aaron; Seelinger, George H., “Canonical idempotents of
multiplicity-free families of algebras,” arXiv Mathematics e-prints. Web. 2016. (https:
//arxiv.org/abs/1606.08900)

[BoDVOr] Bowman, Christopher; De Visscher, Maud; Orellana, Rose, “The partition algebra
and the Kronecker coefficients,” arXiv Mathematics e-prints. Web. 2012. (https://arxiv.
org/abs/1210.5579)

36

https://arxiv.org/abs/1606.08900
https://arxiv.org/abs/1606.08900
https://arxiv.org/abs/1210.5579
https://arxiv.org/abs/1210.5579

	Introduction
	Preliminaries on Representation Theory
	Ideals, Semisimplicity, and Decompositions
	Algebra, ring, and group representations
	Lie algebras and Lie algebra representations
	A taste of Lie methods
	Connections between Lie groups and Lie algebras
	Some more examples
	Idempotents
	Idempotents of group algebras

	Computing the isotypic components of one-dimensional submodules of the symmetric group algebra
	Finding the irreducible one-Dimensional submodules

	Central-Primitive Orthogonal Idempotents of \mathbb{C}S_k as Actions on (\mathbb{C}^n)^{\otimes k}
	Sanity check

	Brauer algebra idempotents
	Sanity checks
	Moving forward

