PythonStochasticDiffEq

October 13, 2019

1 Simple Stochastic Differential Equation Model in Python
Let Z; for t € [0, 00) be the stochastic process for which:

1. A%Z = Zy, — Zy, is normally distributed with mean 0 and variance t; — ¢y > 0,
2. AiéZ and A3l Z are independent random variables whenever [to, 1] and [sq, s1] are disjoint
intervals.

In essence, the infinitesimal change in the random variable, dZ;, behaves like a normally dis-
tributed random variable with mean 0 and variance “dt”.

A stochastic differential equation can be expressed as

dXt = T(Xt, t)dt + O'(Xt, t)dZt

with initial value Xy = ¢, a constant random variable, and r, o functions of X; and ¢.

If we let r(X¢,t) = roX¢ for r € R and o(Xy,t) = 09X with o9 > 1, we are searching for the
stochastic process X; for which

dXt = Xt(Tth + O'OdZt)

Let us model the realization of a path ¢t — X;(w), where w is in the the event space (2.

We make use of the following facts:

1. If Aié Z is normally distributed with mean 0, variance ¢; —ty, then Aié Z = \/t; — tgY, where
Y is a standard, normal random variable.

2. Consider the sub-division of the interval [0, T] by intervals of length T'/N. Let t;, = kT'/N,
and recursively define for V > k > 1:

Xo, — Xopy = Xeo_, (r0(ti — te—1) + 00 Z)

lk—1
Then for t,

T
th :th71(1+T0N+0'0 T/N Y)

i.e. at time ¢, the random variable is determined by what ocurred at time ¢;_;. So to model a
path or realization, we can plot ¢;, against X;, . To approximate our random variable X7, we sum
over the values X;, — X;, :

Xr~ SN Xy, — X;,_, for N large.

Importing some of the things we need:



In [100]: import random
import math
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8,06)
import numpy as np

Setting up our parameters:

In [68]: X_0=5

r_0=-0.001
sigma_0=0.45
T=5

N=300

Setting up our ¢, points:

In [69]: t=[]
for k in range (0,N+1) :
t+=[T*k/N]

Every time the following code is run, a new realization will be graphed:
In [94]: ]
0]*(1+r_O+sigma_0O*math.sqgrt (T/N) xrandom.normalvariate (0,1))]
for k in range (2,N+1) :

x+=[x[k-1]* (1+r_O+sigma_O+math.sqrt (T/N) rrandom.normalvariate (0, 1)) ]

plt.plot (t, x)
plt.show ()

x=[X_0
x+=[x[



Now let’s look at about 20 trials:

In [96]: for j in range (0, 20):
x=[X_0]
x+=[x[0]* (1+r_0O+sigma_O+math.sqrt (T/N) rrandom.normalvariate (0, 1)) ]
for k in range(2,N+1):
x+=[x[k-1]* (1+r_O+sigma_O+math.sqrt (T/N) random.normalvariate (0, 1)
plt.plot (t, x)
plt.show ()



To determine a trend, we will store 10,000 realizations as the value z7(w), and then plot a
histogram.

In [111]: X_T=[]

for j in range (0,10000) :
x=[X_0]
x+=[x[0]* (1+r_0+sigma_0O+math.sqrt (T/N) rrandom.normalvariate (0, 1)) ]
for k in range (2,N+1):

x+=[x[k-1]* (1+r_0O+sigma_Oxmath.sqrt (T/N) rrandom.normalvariate (0,

X_T+=[x[N]]

plt.hist (X_T,bins="auto');



800 4

600 -

400 4

200 4

Which looks a lot like a log normal distribution... Just to verify our suspicions:

In [112]: L_T=1[]
for x in X_T:
L_T+=[math.log(x) ]
plt.hist (L_T,bins="auto');




In

500 -

400 4

300

200 4

100




	Simple Stochastic Differential Equation Model in Python

