PythonStochasticDiffEq

October 13, 2019

1 Simple Stochastic Differential Equation Model in Python

Let Z_t for $t \in [0, \infty)$ be the stochastic process for which:

- 1. $\Delta_{t_0}^{t_1} Z = Z_{t_1} Z_{t_0}$ is normally distributed with mean 0 and variance $t_1 t_0 > 0$,
- 2. $\Delta_{t_0}^{t_1}Z$ and $\Delta_{s_0}^{s_1}Z$ are independent random variables whenever $[t_0, t_1]$ and $[s_0, s_1]$ are disjoint intervals.

In essence, the infinitesimal change in the random variable, dZ_t , behaves like a normally distributed random variable with mean 0 and variance "dt".

A stochastic differential equation can be expressed as

 $dX_t = r(X_t, t)dt + \sigma(X_t, t)dZ_t$

with initial value $X_0 = c$, a constant random variable, and r, σ functions of X_t and t.

If we let $r(X_t, t) = r_0 X_t$ for $r \in \mathbb{R}$ and $\sigma(X_t, t) = \sigma_0 X_t$ with $\sigma_0 > 1$, we are searching for the stochastic process X_t for which

 $dX_t = X_t(r_0dt + \sigma_0dZ_t)$

Let us model the realization of a path $t \mapsto X_t(\omega)$, where ω is in the the event space Ω . We make use of the following facts:

- 1. If $\Delta_{t_0}^{t_1}Z$ is normally distributed with mean 0, variance $t_1 t_0$, then $\Delta_{t_0}^{t_1}Z = \sqrt{t_1 t_0}Y$, where *Y* is a standard, normal random variable.
- 2. Consider the sub-division of the interval [0,T] by intervals of length T/N. Let $t_k = kT/N$, and recursively define for $N \ge k \ge 1$:

$$X_{t_k} - X_{t_{k-1}} = X_{t_{k-1}} (r_0(t_k - t_{k-1}) + \sigma_0 \Delta_{t_{k-1}}^{t_k} Z)$$

Then for t_k ,

$$X_{t_k} = X_{t_{k-1}} (1 + r_0 \frac{T}{N} + \sigma_0 \sqrt{T/N} Y)$$

i.e. at time t_k , the random variable is determined by what ocurred at time t_{k-1} . So to model a path or realization, we can plot t_k against X_{t_k} . To approximate our random variable X_T , we sum over the values $X_{t_k} - X_{t_{k-1}}$:

 $X_T \approx \sum_{k=1}^N X_{t_k} - X_{t_{k-1}}$ for N large.

Importing some of the things we need:

```
In [100]: import random
    import math
    import matplotlib.pyplot as plt
    plt.rcParams["figure.figsize"] = (8,6)
    import numpy as np
```

Setting up our parameters:

```
In [68]: X_0=5
    r_0=-0.001
    sigma_0=0.45
    T=5
    N=300
```

Setting up our t_k points:

```
In [69]: t=[]
    for k in range(0,N+1):
        t+=[T*k/N]
```

Every time the following code is run, a new realization will be graphed:

```
In [94]: x=[X_0]
    x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
    for k in range(2,N+1):
        x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
    plt.plot(t,x)
    plt.show()
```


Now let's look at about 20 trials:

```
In [96]: for j in range(0,20):
    x=[X_0]
    x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
    for k in range(2,N+1):
        x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1)
        plt.plot(t,x)
    plt.show()
```


To determine a trend, we will store 10,000 realizations as the value $x_T(\omega)$, and then plot a histogram.

```
In [111]: X_T=[]
for j in range(0,10000):
    x=[X_0]
    x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
    for k in range(2,N+1):
        x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1)]
        X_T+=[x[N]]
    plt.hist(X_T,bins='auto');
```


Which looks a lot like a log normal distribution... Just to verify our suspicions:

```
In [112]: L_T=[]
    for x in X_T:
        L_T+=[math.log(x)]
        plt.hist(L_T,bins='auto');
```


In []: