
PythonStochasticDiffEq

October 13, 2019

1 Simple Stochastic Differential Equation Model in Python

Let Zt for t ∈ [0,∞) be the stochastic process for which:

1. ∆t1
t0
Z = Zt1 − Zt0 is normally distributed with mean 0 and variance t1 − t0 > 0,

2. ∆t1
t0
Z and ∆s1

s0Z are independent random variables whenever [t0, t1] and [s0, s1] are disjoint
intervals.

In essence, the infinitesimal change in the random variable, dZt, behaves like a normally dis-
tributed random variable with mean 0 and variance “dt”.

A stochastic differential equation can be expressed as
dXt = r(Xt, t)dt+ σ(Xt, t)dZt

with initial value X0 = c, a constant random variable, and r, σ functions of Xt and t.
If we let r(Xt, t) = r0Xt for r ∈ R and σ(Xt, t) = σ0Xt with σ0 > 1, we are searching for the

stochastic process Xt for which
dXt = Xt(r0dt+ σ0dZt)
Let us model the realization of a path t 7→ Xt(ω), where ω is in the the event space Ω.
We make use of the following facts:

1. If ∆t1
t0
Z is normally distributed with mean 0, variance t1− t0, then ∆t1

t0
Z =

√
t1 − t0Y , where

Y is a standard, normal random variable.
2. Consider the sub-division of the interval [0, T] by intervals of length T/N . Let tk = kT/N ,

and recursively define for N ≥ k ≥ 1:

Xtk −Xtk−1
= Xtk−1

(r0(tk − tk−1) + σ0∆
tk
tk−1

Z)

.
Then for tk,

Xtk = Xtk−1
(1 + r0

T

N
+ σ0

√
T/N Y)

.
i.e. at time tk, the random variable is determined by what ocurred at time tk−1. So to model a

path or realization, we can plot tk against Xtk . To approximate our random variable XT , we sum
over the values Xtk −Xtk−1

:
XT ≈

∑N
k=1Xtk −Xtk−1

for N large.
Importing some of the things we need:

1

In [100]: import random
import math
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8,6)
import numpy as np

Setting up our parameters:

In [68]: X_0=5
r_0=-0.001
sigma_0=0.45
T=5
N=300

Setting up our tk points:

In [69]: t=[]
for k in range(0,N+1):

t+=[T*k/N]

Every time the following code is run, a new realization will be graphed:

In [94]: x=[X_0]
x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
for k in range(2,N+1):

x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
plt.plot(t,x)
plt.show()

2

Now let’s look at about 20 trials:

In [96]: for j in range(0,20):
x=[X_0]
x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
for k in range(2,N+1):

x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
plt.plot(t,x)

plt.show()

3

To determine a trend, we will store 10,000 realizations as the value xT (ω), and then plot a
histogram.

In [111]: X_T=[]
for j in range(0,10000):

x=[X_0]
x+=[x[0]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
for k in range(2,N+1):

x+=[x[k-1]*(1+r_0+sigma_0*math.sqrt(T/N)*random.normalvariate(0,1))]
X_T+=[x[N]]

plt.hist(X_T,bins='auto');

4

Which looks a lot like a log normal distribution. . . Just to verify our suspicions:

In [112]: L_T=[]
for x in X_T:

L_T+=[math.log(x)]
plt.hist(L_T,bins='auto');

5

In []:

6

	Simple Stochastic Differential Equation Model in Python

